## Vaccinating Commercial Poultry: The Devil is in the Details

Brian Jordan, PhD

Associate Professor, Department of Population Health Interim Director, Poultry Diagnostic and Research Center (PDRC) brian89@uga.edu, 706-202-0967



#### **Broiler Vaccination Program**



➢Nearly 100% of broilers produced in the US get spray vaccinated in the hatchery for some combination of IBV, NDV, or Coccidia

≻May also get a salmonella or IBDV

For 95% of those broilers, that's the only vaccination they get
 Most complexes do not field boost unless the birds will be housed longer than ~60 days





#### Vaccine Target...

GEORGIA

Spray application of commercially available live *Mycoplasma* gallisepticum (MG) vaccines is a labor- and time-saving means of mass vaccination of layer chickens (7). The effectiveness of spray application of live MG vaccines to poultry can be affected by numerous factors including vaccine suspension titer (13), chemical properties of the suspension media (22,23), temperature of the suspension media (6), physical characteristics of the spray (29), and temporal effects on viability after resuspension (6,22).

Routes of vaccination via spray application may include inhalation through the nares with subsequent travel into the respiratory system, topical application onto the eye surface and associated adnexa, and ingestion (9). While inhalation through the nares, with subsequent transport through the remainder of the respiratory system, is typically cited as a means of vaccine uptake, the particle size necessary to traverse the respiratory tract to its lower recesses is less than 5  $\mu$ m (11,16). Hayter and Besch (16) showed that particles which averaged 5  $\mu$ m or larger were deposited primarily in the upper respiratory system; hence, droplets of vaccine suspension must be

<sup>C</sup>Corresponding author. E-mail: joseph.purswell@ars.usda.gov

Disclaimer: Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U. S. Department of Agriculture.

Approved for publication as Journal Article No. J-11839 of the Mississippi Agricultural and Forestry Experiment Station, Mississippi State University.

smaller in order to be transported into the lower respiratory system. More recently, Corbanie *et al.* (11) evaluated the transport of particles ranging in size from 1 to 20  $\mu$ m through the respiratory system in broilers aged 1 day, 2 wk, and 4 wk. The majority of particles 5  $\mu$ m or greater were found associated with the eyes and nares at least 70% of the time.

Topical application of vaccine onto the surface of the eyes results in drainage into the nasal passages via the nasolacrimal duct (25). Within the nasal passages, most of the lymphoid tissue is present around the choanal and infundibular clefts just rostral to the pharyngeal papillae (15,20,21,32). Vaccine uptake may occur via the secretory duct of the Harderian gland (HG), which connects it to the nictitating membrane (8). The main source of IgA in tears is derived from the HG, and the HG may influence the humoral immune response in other mucosal sites because HG-derived IgA+ B cells have been shown to migrate selectively to cecal tonsils (34). Finally, ingestion of vaccine results in potential stimulation in the upper gastrointestinal tract of lymphoid tissue in the cervical and thoracic

parts of the esophagus as well as in the esophageal tonsil and lymphoid tissue in the proventriculus (10).

Because a recent assessment of spray characteristics of nozzles commonly used to apply live MG vaccine in layer chicken operations has shown that the amount of respirable droplets ( $<5 \mu m$ ) is negligible (29), it is reasonable to assume that the preponderance of both mucosal and systemic immune responses

### Hatchery Vaccination





#### **Vaccine** Preparation



Bronchitis Vaccine Adamsas Type, Live Vitos Vacuna contra la bronquitis Too Adamsas, virus vitos

> Poulvac® IB Ark 10.000 Doses/10.000 Dosis

U.S. Vet. License No. 190 Ucencia Vet. de EE UU. No. 190 Zoetis Inc. Kalamazoo, MI 49007, USA

zoetis

13000

BRONCHITIS

Delaware Type Modified Live

Use entire conferts# Burn this container# contents. Ent direct#

INTERVETENC.

US: Vet. Linense No Rev 117354202



#### **Vaccine** Preparation



Lyophilized is easier to work with
 Can be stored in fridge...no LN or -20/80 needed
 Resuspension is very easy

≻Frozen (LN)

>Needs monitoring in the LN

≻Thawing is a potential point of failure

#### Temperature Can Have an Effect....

## GEORGIA

19.81948

100

#### Before Temperature Adjustment

#### After Temperature Adjustment

28.52212

100

|             |                 | Mass     | Ga08     |         |                  | Mass     | Ga08     |
|-------------|-----------------|----------|----------|---------|------------------|----------|----------|
| <b>Fe</b> 1 | Mean Ct Value   | 28.91717 | 32.89219 | Farm 6  | Mean Ct Value    | 27.83472 | 23.44711 |
| Fallit      | Percent Positve | 93       | 53       |         | Percent Positive | 100      | 100      |
|             |                 |          |          |         |                  |          |          |
| Farm 2      | Mean Ct Value   | 28.65878 | 32.61761 | Farm 7  | Mean Ct Value    | 26.24831 | 23.36542 |
|             | Percent Positve | 100      | 60       |         | Percent Positive | 93       | 100      |
|             |                 |          |          |         |                  |          |          |
| <b>–</b> 0  | Mean Ct Value   | 30.96956 | 37.93806 | Farm 8  | Mean Ct Value    | 29.32748 | 24.18721 |
| Farm 3      | Percent Positve | 100      | 27       |         | Percent Positive | 100      | 100      |
|             |                 |          |          |         |                  |          |          |
|             | Mean Ct Value   | 31,23516 | 37.63699 | Farm 9  | Mean Ct Value    | 28.31188 | 27.3158  |
| Farm 4      | Percent Positve | 100      | 27       |         | Percent Positive | 100      | 100      |
|             |                 |          |          |         |                  |          | 05.07007 |
|             | Mean Ct Value   | 32.8624  | 35.67451 | Farm 10 | Mean Ct Value    | 26.02246 | 25.67387 |
| Farm 5      | Percent Positve | 93       | 13       |         | Percent Positive | 100      | 100      |
|             |                 |          |          |         | Maan Ct Value    | 25 29575 | 27 12962 |
|             |                 |          |          | Farm 11 |                  | 20.20070 | 27.12002 |
|             |                 |          |          |         | Percent Positive | 100      | 100      |
|             |                 |          |          |         |                  | 05.04000 |          |
|             |                 |          |          | Farm 12 | iviean Ct value  | 25.84239 | 25.56308 |
|             |                 |          |          |         | Percent Positive | 100      | 100      |

Farm 13

Mean Ct Value

**Percent Positive** 

#### Vaccine Preparation





# GEORGIA

#### **Frozen Vaccines**



- → BI Mass, 25C, 2 Min
- BI Mass, 25C, 5 Mins
- → BI Mass, 37C, 1 Min
- → BI Mass, 37C, 5 Min
- Poulvac GA08, 25C, 2 Min
- ← Poulvac GA08, 25C, 5 Min
- Poulvac GA08, 37C, 1 Min
- Poulvac GA08, 37C, 5 Min
- Poulvac GA08, 37C, 10 Min
- Poulvac GA08, 16 Hour





![](_page_10_Picture_2.jpeg)

![](_page_11_Figure_0.jpeg)

![](_page_11_Picture_1.jpeg)

![](_page_12_Picture_0.jpeg)

![](_page_12_Picture_1.jpeg)

#### Syringe Mechanics

![](_page_13_Picture_1.jpeg)

![](_page_13_Picture_2.jpeg)

### Syringe Mechanics

![](_page_14_Picture_1.jpeg)

![](_page_14_Picture_2.jpeg)

#### Nozzle Mechanics

![](_page_15_Picture_1.jpeg)

![](_page_15_Picture_2.jpeg)

![](_page_15_Picture_3.jpeg)

#### Nozzle Mechanics

![](_page_16_Picture_1.jpeg)

![](_page_16_Picture_2.jpeg)

#### Nozzle Mechanics

![](_page_17_Picture_1.jpeg)

![](_page_17_Picture_2.jpeg)

![](_page_18_Picture_0.jpeg)

## If You Remember Nothing Else....

Everything is centered around creating larger droplets for spray application

![](_page_18_Picture_3.jpeg)

#### Droplet Size is Always a Range

![](_page_19_Figure_1.jpeg)

Figure 5. Typical drop size distribution.

![](_page_19_Picture_3.jpeg)

#### Smaller Droplets are Less Stable

![](_page_20_Picture_1.jpeg)

#### Evaporation of water droplets

|              |             | Temperate: cool |                | Temperate summer,<br>Dry sub-tropical |                | Humid tropical |                |  |
|--------------|-------------|-----------------|----------------|---------------------------------------|----------------|----------------|----------------|--|
|              | T (°C)      |                 | 16             |                                       | 25             | 30             |                |  |
| Droplet      | RH (%)      |                 | 58             |                                       | 50             |                | 89             |  |
| diameter     | ΔT =        |                 | 4.5            |                                       | 7              |                | 1.5            |  |
| μm           |             | lifetime (s)    | fall dist. (m) | lifetime (s)                          | fall dist, (m) | lifetime (s)   | fall dist. (m) |  |
| 10           |             | 0.3             | 0.0004         | 0.2                                   | 0.0003         | 0.8            | 0.0013         |  |
| 20           |             | 1.1             | 0.007          | 0.7                                   | 0.004          | 3.3            | 0.020          |  |
| 30           |             | 2.5             | 0.03           | 1.6                                   | 0.02           | 7.5            | 0.10           |  |
| 40           |             | 4.4             | 0.11           | 2.9                                   | 0.07           | 13             | 0.32           |  |
| 50           |             | 6.9             | 0.26           | 4.5                                   | 0.17           | 21             | 0.78           |  |
| 75           |             | 16              | 1.3            | 10                                    | 0.85           | 47             | 3.96           |  |
| 100          |             | 28              | 4.2            | 18                                    | 2.7            | 83             | 12.5           |  |
| 150          |             | 63              | 21             | 40                                    | 14             | 188            | 63             |  |
| 200          |             | 111             | 67             | 71                                    | 43             | 333            | 200            |  |
| 300          |             | 250             | 338            | 161                                   | 217            | 750            | 1013           |  |
| 500          |             | 694             | 2604           | 446                                   | 1674           | 2083           | 7813           |  |
| 1000         |             | 2778            | 41667          | 1786                                  | 26786          | 8333           | 125000         |  |
| (estimates b | based on Al | msden, 1962)    | 1              |                                       |                |                |                |  |

![](_page_21_Picture_0.jpeg)

![](_page_21_Picture_1.jpeg)

**Spray Volume Reaching Chicks** 

#### **Titer Loss from Nozzle to Chick**

![](_page_21_Figure_4.jpeg)

#### Lost Vaccine from Small Droplets

![](_page_22_Picture_1.jpeg)

![](_page_22_Picture_2.jpeg)

#### Less Lost Vaccine from Large Droplets

![](_page_23_Picture_1.jpeg)

![](_page_23_Picture_2.jpeg)

![](_page_24_Picture_0.jpeg)

## Tools For Hatchery Quality Control Checks

≻Plexiglass, thermal imaging, and vaccine takes

## Checking Spray Patterns with Chick Paper?

![](_page_25_Picture_1.jpeg)

**GEORGIA** 

1785

### **Plexiglass Sheets**

![](_page_26_Picture_1.jpeg)

![](_page_26_Picture_2.jpeg)

- CRYSTAL CLEAR PLASTIC SHEET - Protects posters against moisture and dust
- PERFECT FOR DIY PROJECTS -Similar to acrylic or plexiglass but thinner and able to be cut with a craft knife or scissors; Easy to write on with dryerase markers and leaves no residue after wiping off
- SAFE AND RECYCLABLE -Made from recyclable PET; Clear, waterproof, shatterresistant, and crack-resistant
- INCLUDES 2 Pieces of 24x36 inches (61x91.4cm) - 0.03" (0.8mm) thick PET sheets shipped with protective film on both sides
- PERFECT REPLACEMENT For poster frames glass that is broken, cracked, scratched, yellowed, or aged; Handy manageable size for DIY projects; Icona Bay PET sheets are available in a variety of sizes: 4x6, 5x7, 8x10, 8.5x11, 11x14, 12x24, 24x24, 18x24,

![](_page_26_Picture_8.jpeg)

Roll over image to zoom in

### Poor Spray Application

![](_page_27_Picture_1.jpeg)

![](_page_27_Picture_2.jpeg)

### Poor Spray Application

![](_page_28_Picture_1.jpeg)

![](_page_28_Picture_2.jpeg)

## GEORGIA 1785

#### **Poor Spray Application**

![](_page_29_Picture_2.jpeg)

## Optimized Spray Application

![](_page_30_Picture_1.jpeg)

![](_page_30_Picture_2.jpeg)

### Thermal Imaging

![](_page_31_Picture_1.jpeg)

#### PRO-GRADE THERMAL CAMERA FOR SMARTPHONES

#### FLIR One Pro LT

MODEL: FLIR ONE PRO LT IOS

Go to Product Support »

FLIR ONE Pro LT has the power to find hidden problems faster than ever. With the enhanced resolution of FLIR VividIR<sup>™</sup> processing, added perspective of FLIR MSX®, and the convenience of the OneFit<sup>™</sup> adjustable connector, FLIR ONE Pro LT works as hard as you do. Whether you're a professional or just focused on DIY projects, the FLIR ONE Pro LT has the powerful features you need at an affordable price.

![](_page_31_Picture_7.jpeg)

### **Optimized Spray Application**

![](_page_32_Picture_1.jpeg)

![](_page_32_Picture_2.jpeg)

![](_page_32_Picture_3.jpeg)

### **Optimized Spray Application**

![](_page_33_Picture_1.jpeg)

![](_page_33_Picture_2.jpeg)

### **Optimized Spray Vaccination**

![](_page_34_Picture_1.jpeg)

![](_page_34_Picture_2.jpeg)

![](_page_34_Picture_3.jpeg)

![](_page_35_Picture_0.jpeg)

#### Use Real-Time PCR to Check and See if Chicks Received Vaccine: Vaccine Takes

#### Temperature Can Have an Effect....

## GEORGIA

19.81948

100

#### Before Temperature Adjustment

#### After Temperature Adjustment

28.52212

100

|             |                 | Mass     | Ga08     |         |                  | Mass     | Ga08     |
|-------------|-----------------|----------|----------|---------|------------------|----------|----------|
| <b>Fe</b> 1 | Mean Ct Value   | 28.91717 | 32.89219 | Farm 6  | Mean Ct Value    | 27.83472 | 23.44711 |
| Fallit      | Percent Positve | 93       | 53       |         | Percent Positive | 100      | 100      |
|             |                 |          |          |         |                  |          |          |
| Farm 2      | Mean Ct Value   | 28.65878 | 32.61761 | Farm 7  | Mean Ct Value    | 26.24831 | 23.36542 |
|             | Percent Positve | 100      | 60       |         | Percent Positive | 93       | 100      |
|             |                 |          |          |         |                  |          |          |
| <b>–</b> 0  | Mean Ct Value   | 30.96956 | 37.93806 | Farm 8  | Mean Ct Value    | 29.32748 | 24.18721 |
| Farm 3      | Percent Positve | 100      | 27       |         | Percent Positive | 100      | 100      |
|             |                 |          |          |         |                  |          |          |
|             | Mean Ct Value   | 31,23516 | 37.63699 | Farm 9  | Mean Ct Value    | 28.31188 | 27.3158  |
| Farm 4      | Percent Positve | 100      | 27       |         | Percent Positive | 100      | 100      |
|             |                 |          |          |         |                  |          | 05.07007 |
|             | Mean Ct Value   | 32.8624  | 35.67451 | Farm 10 | Mean Ct Value    | 26.02246 | 25.67387 |
| Farm 5      | Percent Positve | 93       | 13       |         | Percent Positive | 100      | 100      |
|             |                 |          |          |         | Maan Ct Value    | 25 29575 | 27 12962 |
|             |                 |          |          | Farm 11 |                  | 20.20070 | 27.12002 |
|             |                 |          |          |         | Percent Positive | 100      | 100      |
|             |                 |          |          |         |                  | 05.04000 |          |
|             |                 |          |          | Farm 12 | iviean Ct value  | 25.84239 | 25.56308 |
|             |                 |          |          |         | Percent Positive | 100      | 100      |

Farm 13

Mean Ct Value

**Percent Positive** 

![](_page_37_Picture_0.jpeg)

## Pullet Vaccination Program (Layer or Broiler-Breeder)

- ➢Multiple applications of live-attenuated vaccine (especially IBV and NDV) during rearing
- ➢Majority of these applications are spray, but some are through the drinking water
- ≻Much harder to do correctly

![](_page_38_Picture_0.jpeg)

![](_page_38_Picture_1.jpeg)

![](_page_39_Picture_0.jpeg)

![](_page_39_Picture_1.jpeg)

![](_page_40_Figure_0.jpeg)

![](_page_41_Figure_0.jpeg)

![](_page_42_Figure_0.jpeg)

GEORGIA

![](_page_43_Picture_0.jpeg)

![](_page_43_Picture_1.jpeg)

![](_page_44_Picture_0.jpeg)

![](_page_44_Picture_1.jpeg)

![](_page_45_Picture_0.jpeg)

![](_page_45_Picture_1.jpeg)

![](_page_46_Figure_0.jpeg)

![](_page_47_Picture_0.jpeg)

#### Water Source and pH Also Matter

![](_page_47_Figure_2.jpeg)

![](_page_48_Picture_0.jpeg)

![](_page_48_Picture_1.jpeg)

#### Smaller Droplets are Less Stable

![](_page_49_Picture_1.jpeg)

#### Evaporation of water droplets

|              |             | Temperate: cool |                | Temperate summer,<br>Dry sub-tropical |                | Humid tropical |                |  |
|--------------|-------------|-----------------|----------------|---------------------------------------|----------------|----------------|----------------|--|
|              | T (°C)      |                 | 16             |                                       | 25             | 30             |                |  |
| Droplet      | RH (%)      |                 | 58             |                                       | 50             |                | 89             |  |
| diameter     | ΔT =        |                 | 4.5            |                                       | 7              |                | 1.5            |  |
| μm           |             | lifetime (s)    | fall dist. (m) | lifetime (s)                          | fall dist, (m) | lifetime (s)   | fall dist. (m) |  |
| 10           |             | 0.3             | 0.0004         | 0.2                                   | 0.0003         | 0.8            | 0.0013         |  |
| 20           |             | 1.1             | 0.007          | 0.7                                   | 0.004          | 3.3            | 0.020          |  |
| 30           |             | 2.5             | 0.03           | 1.6                                   | 0.02           | 7.5            | 0.10           |  |
| 40           |             | 4.4             | 0.11           | 2.9                                   | 0.07           | 13             | 0.32           |  |
| 50           |             | 6.9             | 0.26           | 4.5                                   | 0.17           | 21             | 0.78           |  |
| 75           |             | 16              | 1.3            | 10                                    | 0.85           | 47             | 3.96           |  |
| 100          |             | 28              | 4.2            | 18                                    | 2.7            | 83             | 12.5           |  |
| 150          |             | 63              | 21             | 40                                    | 14             | 188            | 63             |  |
| 200          |             | 111             | 67             | 71                                    | 43             | 333            | 200            |  |
| 300          |             | 250             | 338            | 161                                   | 217            | 750            | 1013           |  |
| 500          |             | 694             | 2604           | 446                                   | 1674           | 2083           | 7813           |  |
| 1000         |             | 2778            | 41667          | 1786                                  | 26786          | 8333           | 125000         |  |
| (estimates b | based on Ai | msden, 1962)    |                |                                       |                |                |                |  |

![](_page_50_Picture_0.jpeg)

![](_page_50_Picture_1.jpeg)

## **Complex E** 20

IBV+/-

Mass

Conn

![](_page_51_Picture_1.jpeg)

![](_page_51_Figure_2.jpeg)

![](_page_52_Picture_0.jpeg)

![](_page_52_Picture_1.jpeg)

**Complex E** 

Complex E

![](_page_53_Figure_2.jpeg)

## Spray Vaccination Recommendations

![](_page_54_Picture_1.jpeg)

- > Volume is critical. You must have enough diluent to adequately deliver the vaccine
- > Use larger flow rate nozzles...you get better maintenance of IBV during the spray and larger droplets which will settle faster and carry more vaccine per droplet

Congregate birds?

## Not All Vaccines are Created Equal

![](_page_55_Picture_1.jpeg)

>Which vaccines give me the best shot?

#### Vaccine Take Data Set

![](_page_56_Figure_1.jpeg)

Limited to broiler operations from 2019-2023 (~4 years).
 Total of 5,855 real-time PCR reactions, ~3,500 samples, all samples collected at 7 days of age

≻14 different integrators across 13 states

![](_page_57_Figure_0.jpeg)

#### Vaccine Take Data Set

![](_page_58_Figure_1.jpeg)

- ≻Limited to broiler operations from 2019-2023 (~4 years).
- ➢Total of 5,855 real-time PCR reactions, ~3,500 samples, all samples collected at 7 days of age
- ≻14 different integrators across 13 states
- Four main vaccines used; Mass, GA08, GA98, and recently DMV
   Only had 1 Mass/Conn or DE072 dataset (excluded)
   Ark vaccine usage dramatically declined starting in 2018, so any Ark
  - datasets were excluded

![](_page_59_Picture_0.jpeg)

![](_page_59_Picture_1.jpeg)

![](_page_59_Figure_2.jpeg)

**Complex E** 

Complex E

![](_page_60_Figure_2.jpeg)

**Complex E** 

![](_page_61_Figure_1.jpeg)

![](_page_61_Figure_2.jpeg)

Complex E

•

![](_page_62_Picture_1.jpeg)

![](_page_62_Figure_2.jpeg)

![](_page_62_Figure_3.jpeg)

![](_page_62_Figure_4.jpeg)

#### **Mass Vaccination Recommendations**

![](_page_63_Picture_1.jpeg)

≻Follow the SOPs as written, but don't be afraid to check up

Dosing and diluent volume are extremely important, and we often undershoot both

>We now have tools and labs to evaluate how effective we are

### Many Thanks

![](_page_64_Picture_1.jpeg)

- Alix Nelson
  Maggie Thompson
  Izzy Hannay
  Eric Shepherd
  Sunny Cheng
  Debbie Hilt
- ≻Mark Jackwood
- ≻Kim Bouwman
- ≻Cory Yarbrough

#### Questions??

![](_page_65_Picture_1.jpeg)

![](_page_65_Picture_2.jpeg)